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The nonlinear temporal-spatial modulation of a near-planar Rayleigh instability 
wave is studied. The amplitude of the wave is allowed to be a slowly varying 
function of spanwise position as well as of time (or streamwise variable in the spatial 
evolution case). It is shown that the development of the disturbance is controlled 
by critical-layer nonlinear effects when the linear growth rate decreases to O(es) ,  
where e is the magnitude of the disturbance. Nonlinear interactions influence the 
evolution by producing spanwise dependent mean-flow distortions. The evolution 
is governed by an integro-partial-differential equation containing history-dependent 
nonlinear terms of Hickernell (1984) type. A notable feature of the amplitude 
equation is that the highest derivative with respect to spanwise position appears 
in the nonlinear terms. These terms are associated with three-dimensionality. The 
possible properties of the amplitude equation are discussed. Numerical solutions show 
that a disturbance initially centred at a spanwise position can propagate laterally to 
form concentrated, quasi-periodic streamwise vortices. This qualitatively captures the 
phenomena observed in experiments. The focusing of vorticity may be associated 
with a localized singularity which can occur at a finite distance downstream or within 
a finite time. It is noted that the amplitude equation is rather generic and applies to 
a broad class of shear flows which is inviscidly unstable. 

1. Introduction 
1.1. Streamwise vortices in boundary layers 

Experiments on boundary-layer transition have revealed that following an initial 
two-dimensional development stage, three-dimensional disturbances grow quickly. 
Consequently, the mean-flow is distorted into a ‘peak-valley’ splitting pattern con- 
sisting of streamwise (longitudinal) vortices. High shear layers appear in the valleys, 
where secondary small-scale instability occurs accompanied by the eruption of vor- 
ticity from the wall layer, e.g. see Klebanoff, Tidstrom & Sargent (1962). Direct 
numerical simulations have confirmed these observations (see e.g. Kleiser & Zang 
1991). A comprehensive list of experimental and computational studies can be found 
in e.g. Hall & Smith (1990, 1991). Similar events have also been observed in fully 
developed turbulent boundary layers (e.g. Kline et al. 1968; Kim, Kline & Reynolds 
1971). 

Such phenomena were studied theoretically by Stuart (1984, 1987) from the view- 
point of initial value problems. The streamwise vortices were modelled by an inviscid 
secondary flow embedded in an otherwise parallel shear flow. Assuming that the 
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secondary flow is symmetric in the spanwise direction, Stuart (1990) showed that a 
singularity may occur on the symmetric plane in a finite time. The singularity is of 
unsteady separation type (see e.g. Cowley, Van Dommelen & Lam 1990). In Stuart’s 
theory, the secondary flow does not have to be associated with any instability waves. 
While being a highly simplified model, it incorporates two fundamental aspects: 
three-dimensionality and nonlinearity, which are believed to be prerequisites for the 
flow to undergo stretching and tilting. Studies which do not invoke instability modes 
include, Landahl (1975), Breuer & Landahl (1990) and Breuer & Haritonidis (1990). 
They suggest that the transient response of a parallel shear flow to three-dimensional 
perturbations may be more important than instability modes in certain circumstances, 
such as in so-called ‘by-pass’ transition. 

An alternative approach, which is based on hydrodynamic instability, is to study 
the spatially modulated Tollmien-Schlichting (T-S) waves (Hocking, Stewartson & 
Stuart 1972; Davey, Hocking & Stewartson 1974). This idea has recently been 
developed by Smith & Walton (1989) and Hall & Smith (1990) in the framework 
of high-Reynolds-number asymptotic approximations. They considered the nonlinear 
evolution of near-planar waves which are slightly warped in the spanwise direction. 
The lower-branch scaling regime was adopted. It was shown that a small three- 
dimensional ‘warping’ could be amplified by nonlinear effects leading to spanwise 
concentration of streamwise vorticity and that a large mean-flow distortion could 
be provoked by relatively small-amplitude disturbances (see $6.2). The dominant 
interaction was between the wave and the induced mean-flow distortion while the 
harmonics did not play a significant role. More recently, Stewart & Smith (1992) and 
Smith & Bowles (1992) considered similar problems in the so-called ‘high-frequency’ 
limit of the lower-branch regime. It is claimed that the dominant nonlinear effects 
first become important in the bulk of the flow while the critical layers remain passive. 
Comparisons with experiments were made and were found to be favourable. 

1.2. Streamwise vortices in free shear layers and Stokes layers 
It has been well recognized that streamwise vortices also exist in free shear layers; 
see e.g. Konrad (1976), Breidenthal (1981), Bernal (1981), Jimenez (1983), Jimenez, 
Cogollos & Bernal (1985). They observed that longitudinal streaks or pairs of 
counter-rotating streamwise vortices were superimposed on the primary spanwise 
vortices. Bernal (1981) and Bernal & Roshko (1986) suggest that the counter-rotating 
vortex pair are part of a vortex that continuously loops back and forth in the 
region between adjacent spanwise vortices. Experimental studies of the origin and 
the evolution of the streamwise vortices include Lasheras, Cho & Maxworthy (1986), 
Lasheras & Choi (1988), Bell & Mehta (1992). They suggest that small streamwise 
vorticity is stretched by the strain produced by the primary spanwise vortices to 
form concentrated vortices - a mechanism proposed earlier by Lin & Corcos (1984). 
The vortices were observed to appear first in the braid region, i.e. the region where 
the spanwise vorticity is minimum. This led them to suggest that the stretching 
mainly takes place there. Nygaard & Glezer (1991), on the other hand, suggest that 
longitudinal vortices arise as a result of instability of the primary spanwise vortex core. 
The formation of streamwise vortices was also attributed to secondary instability. We 
shall discus these aspects in $7. 

Lasheras, Choi & Maxworthy (1986, hereafter referred as LCM) studied how 
streamwise vortices developed from a localized perturbation in an otherwise two- 
dimensional flow. They found that as the localized disturbance was convected down- 
stream, it spread laterally and ultimately evolved into a rather regular configuration 
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consisting of counter-rotating vortices. The lateral propagation exhibited a ‘wave-like’ 
feature. The streamwise location at which the longitudinal vortices first appeared 
depended on the magnitude of the upstream disturbance and the position where it 
was introduced. A mechanism for the ‘lateral spreading’ was proposed by them. In 
this paper, we shall develop a theory which will be able to capture this behaviour 
qualitatively. In related experiments, Lasheras & Choi (1988) and Nygaard & Glezer 
(1991) showed that a weak, spanwise-periodic disturbance introduced upstream could 
also develop into concentrated streamwise vorticity ; our approach applies to this 
situation as well provided that the spanwise lengthscale is large. 

There have been several numerical and theoretical studies of these phenomena 
observed in free shear layers. Lin & Corcos (1984) argued that the local flow in 
the braid region could be approximated by a uniformly straining field. They thus 
studied the evolution of spanwise-periodic vorticity in such a flow, and found that 
concentrated streamwise vortices could form under the combined effects of straining 
and nonlinearity. Pullin & Jacobs (1986) further studied the Lin-Corcos model using 
a contour-dynamics method. However, in the Lin-Corcos model, while the uniform 
strain field may well represent the local effect of the spanwise vortices, the shear, 
i.e. the spanwise vorticity of the basic flow, is completely ignored. A more realistic 
model is that of Ashurst & Meiburg (1988), in which the shear layer was idealized as 
a vortex sheet. The three-dimensional disturbance was introduced by dislocating the 
centreline of each spanwise vorticity filament periodically. The temporal sequences 
computed by them were able to capture certain features observed by Lasheras & Choi 
(1988). Ashurst & Meiburg also considered the evolution of a localized disturbance, 
and found that it could propagate laterally as observed by LCM. However they did 
not preclude the possibility that the result was due to the spurious instability of the 
filament model. On the other hand, Pierrehumbert & Widnall (1982) identified the 
so-called translative instability mode for Stuart vortices. They suggested that the 
observed three-dimensional structure might be related to this mode. 

Hino, 
Sawamoto & Takasu (1976) inferred their existence from the measurement of ve- 
locity profiles. Subsequently, Hino et al. (1983) visualized the structure of the vortices 
and found that they were similar to those observed in the turbulent boundary layers. 
On the theoretical side, the instability analysis for time-dependent shear flows (e.g. 
Stokes layers) of high-Reynolds-number is parallel to that for spatially evolving shear 
layers; see e.g. Cowley (1987) and Wu (1991). 

Longitudinal vortices were also observed in oscillatory Stokes layers. 

1.3. The scope of the present study 
This paper is to investigate vorticity concentration in shear flows, particularly in 
free shear layers. The instability waves of concern are Rayleigh modes. Following 
the idea of Hocking et al. (1972) and recent work of Smith & Walton (1989) and 
Hall & Smith (1990) on T-S waves, we consider a disturbance which is basically 
two-dimensional but is slowly modulated in the spanwise direction. This modulation 
represents some unavoidable three-dimensional distortion or ‘imperfection’ present 
in the flow. We shall examine whether such a slight imperfection can be amplified 
by nonlinear effects. A number of experiments suggest that the streamwise vortices 
appear to be ‘facility induced’, i.e. they result from amplification and redistribution 
of some small imperfections (Jimenez 1983; Jimenez et al. 1985; LCM; Lasheras & 
Choi 1988; Nygaard 8z Glezer 1991). 

As will be shown, the crucial nonlinear effect is associated with the unsteady 
(and viscous) critical layers, i.e. thin regions centred on levels at which the phase 
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velocity of the disturbance is equal to the basic flow velocity. This is in contrast 
to the theoretical studies mentioned above, where such an effect is absent (or not 
investigated). Nonlinear effects of unsteady critical layers on instabilities of flows have 
been studied, e.g. by Hickernell (1984)’ Churilov & Shukhman (1988), Goldstein & 
Leib (1989), Goldstein & Choi (1989), Shukhman (1991), Goldstein & Lee (1992), Wu 
(1992), Wu, Lee & Cowley (1993). A common feature is that nonlinear interactions 
within the critical layers can control the overall development of the disturbances. 
The resulting amplitude equations contain history-dependent nonlinear terms. In 
particular, for a pair of oblique modes, Goldstein & Choi (1989) showed that 
because of a simple pole (singularity) in the streamwise and spanwise velocities of 
the disturbance, the evolution is much more sensitive to nonlinear effects than the 
purely two-dimensional modes. This indicates the importance of three-dimensionality 
in the nonlinear stage. Wu et al. (1993) extended Goldstein & Choi’s analysis into 
the viscous regime. By analysing the very viscous limit, they demonstrated that a link 
can be established between the unsteady-critical-layer approach of Goldstein and co- 
workers and the wave-vortex interaction approach of Hall & Smith (1991) and Brown, 
Brown & Smith (1993). In particular, in the viscous limit the amplitude equation 
of Wu et al. (1993) reverts to that of Smith, Brown & Brown (1993). However, in 
all previous studies of unsteady critical layers, the disturbances are assumed to be 
either two-dimensional or strictly periodical in the spanwise direction. Here we shall 
relax this restriction by allowing the spanwise distribution to modulate so that we 
can investigate vorticity concentration in space. 

The basic flow that we choose to present our analysis is a Stokes layer generated 
by a flat plate oscillating sinusoidally in an infinite fluid. The reason is that for the 
Stokes layer the critical layers are not necessarily located at inflexion points. Thus we 
can present our theory in a more general form. We shall show that free shear layers 
can be treated as a special case, though some minor modification to the analysis 
is necessary because the evolution is now spatial rather than temporal. The linear 
instability of the Stokes layer has been studied by Tromans (1979) and Cowley (1987). 
Nonlinear effects have been studied in three previous papers (Wu & Cowley 1993; 
Wu et al. 1993; Wu 1992) for two-dimensional waves, pairs of oblique waves and 
resonant triad waves. 

As in Wu & Cowley (1993), to fix our ideas we consider the modes existing beneath 
the solid curve A in figure 1. In particular, suppose that an instability wave with 
wavenumber CI is excited at time zi on the left branch of the neutral curve A. We 
assume that the dependence on the spanwise location is weak so that the dispersion 
relation is not affected at leading order by this weak three-dimensionality. According 
to linear theory (Tromans 1979; Cowley 1987), the disturbance grows exponentially 
until the neutral time, say zo on the right branch? of neutral curve A, is approached. 
Because the linear growth rate is small, critical layers emerge. Nonlinearity, among 
other effects, may become important (Maslowe 1986; Stewartson 1981). The main 
concern of this study is how critical-layer nonlinearity affects the development of such 
a small disturbance, in particular how the disturbance vorticity is redistributed in 
space. 

The overall plan of the paper is as follows. In 52, we analyse nonlinear interactions 
inside the critical layers to fix the underlying scalings. In 53, we consider the flow 

7 We note that our analysis also applies to the vicinity of the left branch of the neutral 
curves A and B. A discussion of when nonlinearity becomes important in these regions follows 
straightforwardly from that of Wu et al. (1993). 
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FIGURE 1. Sketch of the linear neutral diagram for wavenumbers c1 (from Cowley 1987). zo is a 
point on the right-hand branch of the neutral curve A. In the analysis we concentrate on times 
close to z = zo + E ? . T ~ ,  where E is the magnitude of the disturbance and z1 is an order-one number. 

in the 'outer' region away from the critical layers. The asymptotic solutions near 
the critical layers are constructed, which as usual contain some undetermined jumps. 
A solvability condition is deduced for an inhomogeneous Rayleigh equation. In 
$4, the inner expansions are carried out and the solutions which match with the 
outer expansions are found. By matching, we determine the jumps. In $5, using the 
solvability condition and the jumps, we obtain the amplitude equation for the case of 
the Stokes layers. The amplitude equation for free shear layers is given in Appendix 
A, where we modify the analysis presented in the main text of the paper. In $6, we 
discuss the properties of the amplitude equation. Numerical solutions are presented 
and related to experiments. Finally in $7 we summarize the results of this study, and 
make some comments. 

2. Scaling arguments and formulation 
We take the flow to be described by Cartesian coordinates (x*,y ' , z*) ,  where x* 

is parallel to the direction of oscillation of the plate, y' is normal to the plate and 
Z*  is the spanwise direction. The velocity of the flow on the boundary y' = 0 is 
(Uocoswt',O,O), where t' is the dimensional time. The Stokes layer has a thickness 
6 = (2v/o)i, where v is the kinematic viscosity. The Reynolds number based on 6 
is R = (2Ui/ov)t. We non-dimensionalize the time with o-l, i.e. z = o t ' ,  and write 
(x',y',z') = G(x,y, ,z)  and the velocity as Uo(U, V ,  W ) .  Then the basic flow field is 

(0, V ,  W )  = (cos(z - y)e-Y, 0,O) . 

(U + u,v,w) , 

We denote the perturbed flow by 

Following Tromans (1979), we study high-frequency instability waves, and introduce 
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the fast timescale 

t = $ R z .  

The normal velocity component v of a small-amplitude 
order, has the form 

rAoiqy, z )E cos pz + C.C. , 

(2.1) 
disturbance, to the leading 

where eel, and j? is the spanwise wavenumber; we assume that p c l .  Hereafter, 
C.C. represents the complex conjugate. For the purpose of deriving the scaling, it 
is sufficient to write the dependence on z in this special form. But from the next 
section, a general dependence on the slow spatial variable 2 = j?z will be allowed. 
The function V satisfies the Rayleigh equation, and the order-one complex constant 
A. is a measure of the scaled amplitude of the disturbance. For convenience, we have 
defined 

A 

- ac(z) + R-k1(z )  + . . . , d8 - - 
dt 

E = exp(iax - i6(t)) , 

where c is a complex phase velocity, i.e. c = cr + ici, and a is the wavenumber. In this 
study, we assume that a is of order one. The O ( R - f )  correction to the local frequency 
in (2.2) is from the viscous sub-stokes layer adjacent to the wall (Cowley 1987). 

As discussed earlier, critical-layer nonlinearity asserts its influence at the times near 
to the neutral time, where the linear growth rate ac&. Before we can perform a formal 
asymptotic expansion, we need to specify the evolution timescale, the thickness of the 
critical layers, and the spanwise scale p in terms of e. To this end, we introduce an 
intermediate timescale t l  = acit to take account of the slow growth of the amplitude. 
This timescale is much ‘slower’ than that of the instability waves, but much ‘faster’ 
than the timescale of the underlying Stokes flow. The disturbance is then described 
by the time variables t ,  tl,  z1 and z. In terms of these new variables, the x-momentum 
equation can be written as follows: 

where a / &  has been replaced by -c,a/ax after using (2.2) since this is accurate to 
the order required, and A is the Laplacian operator. 

Suppose that a critical layer is located at ye,  i.e. U(yJ = c, and has a thickness 
of O(p), then near the critical layer (D - c,) is of order p if u,,(yc) = O(1).  We are 
particularly interested in the case where the time-variation term appears at leading 
order in the critical-layer equations. This requires aciau/dtl to balance (U - c,)au/ax, 
which gives 

Such a scaling brings in a non-equilibrium effect that does not occur in the analysis of, 
for example, Davey et al. (1974), Smith & Walton (1989). It leads to a different type 
of amplitude equation that contains history-dependent nonlinear terms of Hickernell 

P - O(ci) * (2.4) 

(1 984) type. - 

equation, we require that 
To ensure that a spatial 

The asymptotic property 
The asymptotic behaviour 

modulation term a 2 / a Z 2  appears in the final amplitude 

82 - O ( a q )  . (2.5) 
of the Rayleigh equation tells us that v - O(e) as y -+ y,. 
of the cross-flow component w is w - eB(y - yC)-’. It 
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follows from the continuity equation that 

Owing to three-dimensionality, the singularity appears as a simple pole. The logarith- 
mic singularity is associated with uyy(ye)  # 0. It turns out that as far as deriving the 
scaling is concerned, we can concentrate only on the pole type of singularity without 
losing generality. This is because the resultant scaling happens to take the logarithmic 
singularity into account as well (see below). 

To fix the scaling, we analyse nonlinear interactions within the critical layers. 
The quadratic interaction, typically through uu,,, produces a forcing of 0 ( ~ ~ p ~ p - ’ ) .  
Balancing this forcing term with acidu/8tl in (2.3), we find that it generates a harmonic 
and a mean-flow distortion, say d2), of order ( ~ ~ f l ~ p - ~ ) .  The cubic interaction through 
vuf) produces a forcing of O ( C ~ B ~ ~ - ~ ) .  Balancing this forcing term with aciau/dtl ,  we 
conclude that it drives a fundamental d3) of 0(e3f12p-’). In order for the evolution 
of the disturbance to be affected by these interactions, this nonlinearly generated 
fundamental is required to match with the unsteadiness of O(acie) - U@E) in the 
outer region (cf. Hickernell 1984), i.e. 

O(E3p2p-5) - 0 ( q )  . (2.7) 
Since a - 0(1), from (2.4), (2.5) and (2.7), we obtain 

Finally, we check for the effect of viscosity. A distinguished case is that the viscous 
diffusion terms appear at leading order in the critical-layer equations. This occurs for 
~ - f  - ~ ( p ) ,  i.e. R - ~ ( r - : ) .  SO we write 

R-’ = 1~2 , (2.10) 

where the parameter 1 is introduced to reflect viscosity effects (cf. Haberman 1972). 
It will be assumed to be order one in g3-5. The very viscous case corresponding to 
1 being asymptotically large will be discussed in 96. 

Equations (2.8), (2.9) and (2.10) set the underlying scalings for this study. Note 
that (2.9) shows that the nonlinear evolution timescale happens to be the same as 
that for a purely two-dimensional wave with a logarithmic singularity (cf. Hickernell 
1984; Wu & Cowley 1993). However, this is merely a coincidence because the present 
scaling is obtained solely by considering the pole type of singularity, irrespective of 
the presence of the logarithmic branch point. Nevertheless, under the present scaling, 
the nonlinear effect associated with the latter singularity is also incorporated and it 
is expected that a corresponding nonlinear term with a coefficient proportional to 
Uy,(yc) will appear in the final amplitude equation (see $5). 

Equations (2.4) and (2.9) indicate that we should concentrate on times near to 

z = zo + ~ 3 ~ 1  , (2.1 1) 

i.e. the times at which the linear growth rate is 0(d).  It is at this stage that nonlinear 
effects control the development of the disturbance, and redistribute the disturbance 
vorticity. For convenience, the nonlinear evolution timescale is rewritten as 

2 

tl = A .  (2.12) 

The evolution of the disturbance is thus described by four time variables, namely t, 
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tl, z1 and zo; the time derivative 8/82 is transformed according to 

a i a  2 a  , a  a 
a7 2 at at1 az, azo - + -R-  + Re3 - + e-3 - + - . (2.13) 

Since the basic flow D evolves on the slow time variable z, it is sufficient to expand 
its profile at time z in a Taylor series about the neutral time zo: 

B(y, z) = O(y, 70) + €5 &(y, zo)z1 + . . . . 
Hereafter all the quantities associated with the basic flow will be evaluated at zo 
unless otherwise mentioned. 

To take account of spanwise modulation, we introduce a slow spatial variable 

2 = e b  , (2.14) 

and thus 
a l a  

a Z  az - + - - , 3 -  (2.15) 

3. Outer expansion 
3.1. Asymptotic solutions near the critical layers 

To the order of approximation required in this study, the flow outside the critical 
layers is linear and inviscid. The velocity and the pressure of the disturbance are 
expanded as 

The 'earlier time' linear solutions suggest that u1 can be written as 

v1 = A(Z,tl,zl,zo)~l(Y,zo)E +c.c. 9 (3.5) 
where A ( 2 ,  tl, zl, zo) is the amplitude, and now is allowed to be an arbitrary function 
of 2. Here E is defined by (2.2) except that z is replaced by zo since we concentrate 
on the vicinity of the neutral time. As in Wu & Cowley (1993), the dependence on zo 
and z1 is parametric to the order of interest in this study, and will not be written out 
explicitly hereafter. The function El satisfies the Rayleigh equation 

( B  - c)(D' - K')Bi - DyyijI = 0 , with d2 D2 = - 
dY 

The boundary conditions are that ijl = 0 on y = 0, and U1 -P 0 as y -+ +a. 

B1 has the asymptotic behaviour 
Let q = y - yi, where y i  is the jth critical level at which U = c.  Then as q -+ +_O, 

(3.7) 
where 

O a = q + L  2 ~ 1 ~  . 2  + * * a  7 O b = I + q j q 2 + . . .  . (3.8) 
The O ( E ~ )  term is introduced to take account of nonlinear interactions inside the 
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critical layer, and has the form u2 = & ( Z ,  y ,  tl)E2 + C.C. The function 82 satisfies the 
same equation and hence has the same asymptotic behaviour as 81 provided a is 
replaced by 2a. Later, however, 3, will be found to be identically zero (see also 
Hickernell 1984). 

The U ( r f )  term u3 has the form u3 = B3(Z, y, t l ) E  + C.C. The function P3 satisfies the 
inhomogeneous Rayleigh equation 

where the last term of the above equation represents the three-dimensional distortion 
of a basically two-dimensional wave. As r j  + k0, 

where 

(3.10) 

(3.1 1) 

(3.12) 

(3.13) 

Here all the basic-flow quantities are evaluated at time zo and the critical lever y!. 
The jumps (a; - a;) etc. will be determined by analysing the critical layers. 

The leading-order cross-flow component wI satisfies 

This suggests that w1 = A Z ( Z ,  t1 ) i i l  ( y ) E  + C.C. We find 

(3.14) 

(3.15) 

The streamwise velocity u1 has the form u1 = A ( 2 ,  tl)iil ( y ) E  + C.C. It follows from 

(3.16) 

As for uz, we find that u2 at O ( E ~ )  is identically zero. The solution for u3 is obtained 

(3.17) 

the continuity equation that 
ul = ia-l- U1.Y . 

from the continuity equation as u3 = ii3(y, 2, t l ) E  + c.c., where 

n3 = ia-1{A(Z,tl)83,Y + Azz(Z,tl)iil} . 
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The pressure p1 can be written as p1 = A ( 2 ,  tl)pl(y)E + c.c., and 

p1 = iu-' [Uyijl - (ii - C ) B ~ , ~ ]  . 

We now introduce an inner variable: 

y -  v -y--y,' 
e: €3 a 

The outer expansions written in terms of the inner variable are 

u - ebfAE + € 4  log ef (-bfrj + bfpjAY)E 

+~i[(-bfr~log(Yl +df)  +A(a;Y +bfpiY log(Y()]E 

(3.18) 

(3.19) 

1 
2 

+ej logeg [ (a f r j  + bfsj + dfpj)Y + -ApjbfY2]E 

+E 3 {cf Y + (a;rj + bf S j  +dFpj) Y log 1 Y 1 + 0 ( Y 210g 1 Y I)}E +CL + . . . , (3.20) 
u - eloge~ia-'bfpjAE + cia-' {bfpjAlOg(Y( 

+A(af + bfpi) - bfrjY-' - ~ - ~ b f A ~ z  Y-'} E + C.C. + . . . , (3.21) 

(3.22) 
(3.23) 

w - -cfu-2bfAz Y-'E + C.C. + . . . , 
p - cia-' UybfE + C.C. + . . . . 

3.2. Solvability condition 
Multiplying both sides of (3.9) by ij1 and integrating from 0 to +a, we obtain the 
solvability condition for (3.9) : 

(3.24) 

where the sum is over all critical layers, and FP denotes the finite part of Aj: 

Aj = (&4yfil - 33fi1y)l~+~!+ - (fi3yfil - &fi~y)I~+~i- * (3.25) 

The constants J1, J2 and J3 are defined as follows: 

(3.26) 

$dy , J3 = lmij:(y)dy . (3.27) 

Note that J1 and J2 are singular and should be interpreted in the sense of Hadamard. 
Substituting (3.7), (3.10) together with (3.8) into (3.25), we find 

(3.28) 

The amplitude equation will follow from (3.24) and (3.28) after (a: -a;) etc. are 
determined. Here it is worth noting that nonlinearity influences the evolution of the 
disturbance by altering these jumps; thus in the analysis of the critical layers, it is 
sufficient to solve for those parts of the solutions contributing to these jumps. 

A j  = bj(cif - c;) - biri(aif -a;) - b,pi(dT - dl:) - (afd; -aid,:) . 
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4. Inner expansion 

take the form 
Equations (3.20)-(3.23) suggest that the expansions within the jth critical layer 

u = EU1 + € g  u2 + € J  u3 + ... , 
u = E V O + € ~ V ~ / o l + € ~ V ~ + r ~ V * + + ~ V ~ +  ... , (4.2) 
w = e ~ W 1 + f W ~ + e ~ W , + . * .  , (4.3) 

+ E g P 2  + c'p3 + . . . , 

(4.1) 

p = (4.4) 
where O(e"1ogef) terms have not been explicitly included. This is because as far 
as deriving the amplitude equation is concerned, they are passive in the sense that 
matches at these orders are guaranteed once the solutions at O(e") match. 

The leading-order term Vo satisfies 

LOV0,YY = 0 9 

where 

The solution which matches the outer expansion is 

V ,  = A(2, t l )E + C.C. , (4.6) 
where A = bjA and bf = b; = bj, i.e. the jump (b; - b;) is zero. 

The function Vol satisfies the same equation as Vo. The appropriate solution is 

V01 = k ( Z ,  t l )  + e (Z ,  t l ) E 2  + C.C. 

The expansion of the y-momentum equation gives 

p1 = ia-' UY&z, t l ) ~  + C.C. 

The cross-flow velocity Wl has the solution Wl = fil (Y, 2, t l ) E  + c.c., where fi, is 
governed by 

- + ia(U,,Y + u7r1) - A$} a y  $l = -ia-lUyAZ(Z, tl) . { (4.7) 

We solve (4.7) using the Fourier transform method, and obtain 

where 
s = i12a'U'y" , and $2 = a(U,Y + U771) . (4.9) 

The vertical velocity component Vl satisfies 

LOV1,YY = LlVO , (4.10) 

where 

Let VI = 91 ( Y ,  Z, t1)E + c.c.; then we find 

(4.1 1) 
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We note that $'1 is equivalent to 
1993). By analogy, we obtain the jump conditions 

in the purely two-dimensional case (Wu & Cowley 

U; - U; = nip,bjSgn(U,) , df - d i  = -nirjbjSgn(G,) . (4.13) 

Similarly, we write U ,  = ol(Y,Z,tl)E + c.c.; then it follows from the continuity 
equation that 

J o  

The function Vz satisfies 

(4.14) 

(4.15) 

The first forcing term above is analogous to that in (4.10) and thus produces an 
analogous velocity jump, while the solution driven by the second term produces no 
velocity jump. Because (2ct,c) is not a fundamental mode of Rayleigh's equation 
(Cowley 1987), u2, and hence u2 and Vol should be identically zero. 

The function W2 satisfies the equation 

(4.16) 
a 

LOW* = --(VoWJ . a Y  
The solution can be written as 

w, = $p + F@(2'E2 + C.C. (4.17) 

It is found>hat at the next order the interaction between the fundamental and the 
harmonic Wy' does not contribute to the jump (c7 - c;), and hence does not affect 
the amplitude equation. Therefore, we solve for the cross-flow distortion @:) only, 
and obtain 

where * represents the complex conjugate, and 
Ko(t, I) = e-S(t3+3t2c) 

We now turn to solve for U2, which is governed by 

- aw2 a 2  
LoU2,y = up-- - -(T/OU,) . az ay2 

The solution takes the form 

U2 = Or) + @)E2 + C.C. 

As for Wz, it sufficient to solve for the mean-flow distortion of) only. We find 

(4.19) 

(4.20) 
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+ujl+l+m51[-d'(Z, tl -C).&(Z, t ,  - 5  -5)lzKO(5, 5)e-i"rd5dr . (4.21) 

To determine the jump (cJ - c;), we need to solve for V3. This term satisfies 

(4.22) 
d 

= L ~ V ~  + L~v,, + iccAfri,T)yE + --(AF%$\)E + C.C. + . . . , az 
where the forcing terms which do not contribute to the jump are omitted, and 

a3 
L~ = - [pyYyy3  + uyyrZ1~2 + uyTZz;y + iu  23]- 

7T7 axaY2 

(4.23) 

We first seek the solution driven by the linear forcing term, i.e. (L1 Vl + L2 Vo), which 
we denote by F(')(Z, Y, tl)E. We note that F(')(Z, Y, t l )  is the same as W(Y,  t l )  of 
the two-dimensional case (Wu & Cowley 1993) except that the former depends on Z .  
Let @ ) E  denote the solution driven by F(')(Z, Y ,  tl)E; then by a similar procedure, 
we find that as Y -+ fco 

P$ -+ (.;pi + 2qjbj + ip;bj) Y + (UTrj + pjd: + sjbj) log I Y 1 
+(-+iniSgn(Uy)(afrj + pjd; + ~jb j )  + . . .> + o(Y-') . (4.24) 

Let PF'E denotes the solution driven by the nonlinear forcing term, i.e. the third 
and fourth terms in (4.22); harmonics can be ignored as far as deriving the amplitude 
equation is concerned. It is found that 

(4.25) tj;iy = -ia 3 - 2 -  vy U,,II~ - a2U;n2 , 

where 

n, ~ + ~ + ~ + i ' a ^ ( z ,  tl - l)A(Z, tl - 5 - q)A^'(Z, tl - 5 - 5 - q) 
XKl(59  ?, r)drdrdq Y (4.26) 

+m +m f m  

n2=l l 1 ~ 5 ,  q, 5) {534z, tl  - C)J(Z, tl - 5 - ~)&Az, tl - 5 - c - q) 
+t2rl&, tl - r"(Z, tl - r - q)A^k(Z, tl - 5 - 5 - 1)lz 

+t3[&, tl - r)a(z, tl  - 5 - q)&Z, tl  - 5 - l - q)lz}  dtd5dq . (4.27) 

The kernel K1 ( 5 ,  q ,  5) is 
K~ ( 5 ,  ?, 5) = e-s [2~2+3~2~-(~-~) ' l - ira( l -T)  , 

Using (4.24)-(4.27), and matching (?$ + p&!) with the outer expansion, we obtain 
the final jump condition 
c t  - CT 
= 7cisgn(Dy)(afrj + pjd,+ + sjbj) 

-2n ia2Dyyluyl~  1 t2&Z,tt - 5)A(z,tt - 5 - q)R'(z,ti - 25 - q)Kj(5,?lL)dtdq 

I J  

+m +m 

26 FLM 256 



698 x. wu 

+m +oo 

- 2 n a 1 ~ ~ 1 3 l  1 < 3 [ ~ ( z , t ~  - t ) a ( z , t i  - 5 - - q ) & ( z , t i  - 25 - q ) ~ z ~ j ( t , q t ~ ) d t d q  , 

(4.28) 

where 
~ ~ ( 5 ,  = e-s(2f3+3f2~) . (4.29) 

Here the suffix j refers to the jth critical layer, and the argument 1 refers to the 
dependence on 1 through (4.9). It is worth noting that while both (af -a;)  and 
(df - dl:) correspond to the classic kn phase shift at the logarithmic branch point, 
( c i  - CJ) is modified by nonlinearity. This modification has a significant effect on 
the evolution of the disturbance. Also note that nonlinearTffects c9me into play 
by producing spanwise-dependent mean-flow distortions, i.e. Up) and Wf", while the 
harmonics have no significance. Though this resembles the wave-vortex interaction, 
it is not appropriate at this stage to link it to the wave-vortex interaction theory 
of Smith & Walton (1989) and Hall & Smith (1990). The reasons are as follows. 
Firstly, this feature is also exhibited in the purely two-dimensional case (Wu & Cowley 
1993). Secondly, in our analysis the harmonics are passive because of the particular 
structure of the solution rather than because they have a smaller magnitude. Indeed, 
in our study they are of the same magnitude as the mean-flow distortions (see (4.17) 
and (4.20)), while in the wave-vortex interaction theories mentioned above, the latter 
usually have a much larger magnitude than the former. Nevertheless, as in Wu et al. 
(1993), the viscous limit of our approach appears to be linked with the wave-vortex 
interaction approach (see §6). 

5. Amplitude equation 

crucial amplitude equation as follows : 
Inserting the jumps (4.13), and (4.28) into (3.28), and using (3.24), we obtain the 

a A  a2A -- 
atl qd22 

(5.1) 

where the sums are over all critical layers; for the Stokes layer under consideration, 
there are two. The kernel Kj(<,qJJ) represents the effect of viscosity, and is defined 
by (4.29). For the inviscid case, 1 = 0; so Kj(t, 5) = 1. The coefficients involved are 
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expressed in terms of the basic-flow profile and the eigenfunction, namely 

go = fo/f  gj = 2nic12b,21bj12vyyIvyl/f 
hj = 27~~b;1bjl~lD~1~/f , 4 = J3/f , 

+ bjn%] *,’ +,TI},  

They can be evaluated in the same way as described by Wu & Cowley (1993). 
To the best of our knowledge, the modulation equation (5.1) has not been derived 

before. We note that the first nonlinear term is associated with the logarithmic 
branch-point singularity. Since it is the same as that in the amplitude equation 
for a purely two-dimensional wave (Hickernell 1984; Wu & Cowley 1993), we shall 
refer to it as the ‘two-dimensional nonlinear term’. The rest of the nonlinear terms 
are associated with the pole type of singularity and hence shall be referred to as 
‘three-dimensional nonlinear terms’ . A notable feature is that they contain spatial 
derivatives, including the highest derivative. 

As we have emphasized, the scaling of this analysis also applies to flows with 
regular critical layers, e.g. free shear layers. The major difference is that for these 
flows we have to consider (streamwise) spatial rather than temporal development. 
Since the formation of streamwise vortices in these flows is of great importance and 
has attracted much attention (see $1), in Appendix A we modify our analysis to 
that case. Thereby we derive the appropriate amplitude equation together with the 
expressions for the coefficients. As we can see, a similar amplitude equation holds, 
except that the ‘two-dimensional nonlinear term’ disappears and a spatial variable x1 
describing the streamwise evolution plays the role of time tl ;  see (A 11). Therefore 
it is sufficient for us to discuss the property of (5.1) only, while treating free shear 
layers as a special case with gj being zero. However, later on our numerical study 
will concentrate on free shear layers. We note that the amplitude equation (A 11) 
also applies to the boundary layer with a weak adverse pressure gradient which is 
inviscidly unstable to long-wavelength Rayleigh modes. 

A property of the modulation equation (5.1) is that if 

A = B(t)eiBz , (5.6) 

then the ‘three-dimensional nonlinear terms’ are identically zero, and as a result 
B satisfies the same equation as the amplitude of a purely two-dimensional wave 
(Hickernell 1984; Wu & Cowley 1993). Note that (5.6) corresponds to the case where 
the disturbance is a single oblique wave. Thus the property above helps to explain 
why the pole type of singularity has no significance for the development of a single 
oblique wave (Goldstein & Leib 1989). 

In this study, we obtain a single amplitude equation, while in the case of Davey 
et al. (1974), the amplitude equation was coupled with an additional function related 
to the secular pressure. However, we note that if it were assumed in their analysis, 
as it is in our case, that the amplitude depended on the spanwise coordinate only, 

26-2 
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then B = /A[' would immediately follow from their (2.28); in this case their coupled 
equations (2.31) and (2.34) are reduced to a single equation, with an additional 
nonlinear term proportional to qAJA12 representing the three-dimensional nonlinear 
effect. 

So far we have implicitly assumed that the amplitude function A(Z,  tl) is defined 
from -a. If we assume that the disturbance is introduced at a specific time, say at 
tl = 0, as in the study of Hickernell (1984), then the integral limit in (5.1) becomes 
J i  0 Jbf'-*', identical to that of Hickernell. Nevertheless, the amplitude equation can 
still be written as (5.1) provided that A ( Z , t l )  is taken to be zero when tl  < 0. 

Following the spirit of Stewartson & Stuart (1971), we require the solution to (5.1) 
to match onto the initial linear evolution stage. A typical case is that the disturbance 
is initially centered at spanwise location, say, 2 = 0. Then as in the studies of 
Hocking et al. (1972), and Hocking & Stewartson (1972), we have 

where A is a measure of the 'strength' of the disturbance. Equations (5.1) and (5.7) 
thus describe the evolution of the disturbance. Note that the solution is required to 
match as tl + 0 rather than as t l  + -a (cf. Goldstein & Leib 1989). This is because 
the problem of a localized disturbance undergoing a diffusion from the 'infinite past' 
is ill-posed; hence the time origin must be specified. 

In addition to the localized initial condition, another important case is where the 
initial disturbance is periodic in the spanwise direction, e.g. 

A -+ [iio + iil ~ 0 ~ p ~ e - q ~ ~ ~ ~ 1 e ~ 0 ~ 1 ~ l  as tt + -a . 
Here we require Re(gozl - qp') 0, which imposes a restriction on z1 and p. The 
periodic initial distribution appears to be relevant to the experiments of Nygaard & 
Glezer (1991) and Lasheras & Choi (1988). However, we shall leave the numerical 
investigation of this case to the future because a spectral method, which is entirely 
different from the finite-difference method adopted for a localized disturbance, must 
be employed. 

For convenience, we rescale the amplitude equation and the initial condition (5.1) 
and (5.7) by introducing new variables (cf. Goldstein & Choi 1989), namely 

A = Ae-igclirltl thI'Iqrt-'/(gezl)' 9 A0 = AoIhI'Iqrt-'/(gorz,)' 7 (5.8) 

t = gezltl , Z = (gezl)flqrl-hz , ;Z = ~ / ( g ~ z ~ ) ~  , (5.9) 
where h = C hj,  gor and goi are the real and imaginary parts of go respectively, and qr 
is the real part of q.  The evolution equation and the initial condition then become 

+t2qA(Z, t  - <)[A(Z,t - 5 - q)Az(Z,t - 25 - q) ]z  

+r3 [A(Z,t - t)A(Z,T - 5 - q)Zh(Z,? - 25 - q ) ] ~ }  d5dq , (5.10) 
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where we have written 

The real constant Bo is 

and is zero for regular 

A+Ao(Z,@e' as 7 - 0 ,  (5.11) 
I as A, ij = qi /qr ,  and g j ,  hj are constants with unit modulus: 

g j  = gj/I  C gjI 3 hj = hj/I C hjI . 

critical layers. 

6. Studies of the amplitude equation 
6.1. Very weak three-dimensionality limit 

The amplitude equation (5.1) is formally valid for f i  N O(e4). We now consider the 
limit p<O(e;), i.e. three-dimensionality is weaker. To this end, we introduce 2 = BZ 
with Be1. For singular critical layers, substituting 2 into (5.1) and taking the limit 
B + 0, we find that d2A/aZ2 and the 'three-dimensional nonlinear terms' can be 
dropped, leaving the 'two-dimensional nonlinear term' dominant, i.e. the disturbance 
can be treated effectively as purely two-dimensional (Hickernell 1984; Wu & Cowley 
1993). 

For regular critical layers (go = 0), we introduce k = BA with d = O(1). Substituting 
this along with 2 into (5.1), we find that k is governed, to leading order, by 

+t'qk(Z, t l  - g) [d(Z, tl - 5 - q)k;(z, tl - 25 - q ) ] z  

where we have dropped the breve over 2. The (unscaled) magnitude now is 
O(ej- ' )  EE 2, while the growth rate remains O(e3).  Equation (6.1) describes the 
evolution of a disturbance with very weak three-dimensionality. However it breaks 
down if three-dimensionality is too weak, i.e. if 8 is sufficiently small. More precisely, 
when the growth rate is of order of the square root of the (unscaled) amplitude, 
i.e. €3 - (eB-')f, or B = O ( e i ) ,  the critical layer becomes strongly nonlinear as 
for a purely two-dimensional disturbance (Goldstein & Leib 1988; Goldstein & 
Hultgren 1989), but subject to some modification due to the coupling with the three- 
dimensional velocity components. Such a problem is currently being investigated by 
Professor A.M. Messister (private communication), who independently obtained the 
scaling. In terms of the unscaled amplitude T, the growth rate, the critical-layer width 
and the spanwise scale (PB) are all of order Ef. This crucial spanwise scale also 
follows directly from (2.7) by setting p = O(ei). So we conclude that (5.1) is valid 
when ef-@ < € 4  while its limit form (6.1) is valid when e k / ? e i .  Once p = O(ei) a 
strongly nonlinear critical layer must be set up. 

6.2. Very viscous limit and relation to waveluortex interaction approach 
The amplitude equation (5.1) is formally derived for e = O(R-a). Next we turn 
to examine the very viscous limit eeR-8, i.e. )i. + +m. This corresponds to the 
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situation where the disturbance is relatively small so that the critical layers become 
viscous-dominated before nonlinearity comes into the reckoning. In Appendix B, it is 
shown that in this limit, equation (5.1) reduces to 

where tl is defined in (B 1). The complex constants 10 and Jo are 

where the sums are again over all critical layers. Interestingly, in the viscous limit the 
nonlinear term is still non-local. Similar behaviour was observed by Wu et al. (1993). 
For (6.2) to be valid, we require A+-.R-i. This is because as A = O(R-; ) ,  z1 ceases to 
be a parameter. Instead, it merges with t l  and becomes a variable. Also the viscous 
sublayer adjacent to the wall will contribute an additional term proportion to A. For 
details of reasoning, see Wu et al. (1993). 

For the regular critical layers (Io = 0), we rescale the equation by the substitutions: 

z = A % z ,  = n-f?,, A = $2 ; 
the rescaled form of (6.2), to leading order, is 

For the singular critical layers, we introduce A = AfA while 2 is defined as in (6.3). 
The rescaled form of (6.2), to leading order, becomes 

Note that it is impossible to rescale (6.2) such that the two nonlinear terms are 
retained in the equation at the same time. This implies that in the very viscous limit 
flows with regular critical layers behave quite differently from those with singular 
critical layers. 

We now examine in some detail how the flow structure changes in this viscous 
limit. Because the critical layers now become steady and viscous-dominated, for the 
mean-flow distortion the balance within the critical layers is between the viscous 
diffusion and the Reynolds stress. As such the mean-flow becomes unbounded at 
the edge of the critical layer and cannot match directly with the flow in the outer 
layer. In particular, as Y -+ +_m, the streamwise component grows like Y log Y .  
Therefore surrounding the critical layer a diffusion layer with an O(14R-4) width 
must be introduced to inhibit the unbounded growth (cf. Wu et al. 1993; Wu 1993; 
see also Brown & Stewartson 1978 for the diffusion layer of a purely two-dimensional 
wave). The balance in the diffusion layer is between the unsteadiness and the viscous 
diffusion, and the transverse variable is f' = 1-4 Y .  The mean-flow components have 
the expansions 

U m = € h l o g 1 f 8 1  + € ~ 1 0 2 + C . C . + . . .  , 
v, = €h.f log14 v, + €$A4 v 2  + C.C. + . . . , 
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w, = E log 1; P, + €w2 + C.C. + . . . . 
703 

The functions 02, v2 and fi2 satisfy 

aV2 a w 2  
- + - - 0 ,  aP az 

The matching with the solution in the critical layer requires that as P + 0, 

O2 + - + - 2 [ ~ * ~ z ] z  B3 log B , W2 + ~ ? A * A ~  log P . 
(6.8) 

The functions 8,, vl and w, are governed by the same equations as (6.6)-(6.7) 
provided that the forcing term in the second equation of (6.7) is removed. The 
matching conditions are 

V2 -+ - C I - ~ [ A * A ~ ] ~  P log P , 

81 + - ' ~ t - ~ [ A * A z ] ~ 8 ~  6 , v, + -a-2[A'Az]zP , l@1 -i LY-~A'AZ . (6.9) 

We find that the interaction between the fundamental and 6,, vl, l@, (and their 
complex conjugates) does not produce any jump, and hence it does not contribute any 
nonlinear term to the evolution equation. However 8; interacts with the fundamental 
to produce the non-local term in (6.2). 

The diffusion layer bears some resemblance to the 'buffer layer' of Hall & Smith 
(1990) and Smith & Walton (1989) in that both regions are introduced to render the 
(spanwise-dependent) mean flow bounded so that a matching between different zones 
can be achieved. Also the induced mean flow in the diffusion layer has a much larger 
magnitude than the harmonics, a feature characteristic of wave-vortex interaction 
in Smith & Walton (1989), Hall & Smith (1990); see also Hall & Smith (1989), 
Smith & Blennerhassett (1992), Brown et al. (1993) and Smith et al. (1993). Indeed, 
the governing equations that Hall & Smith (1990) derive for their buffer layer are 
essentially the same as (6.6) and (6.7). However, for T-S waves, the lowest-order mean- 
flow distortion, i.e. 8, in our notation, can affect the nonlinear interaction (in the 
lower deck) by producing an alteration to the wall shear. The buffer-layer equations 
of Smith & Walton (1989) are similar to (6.6) and (6.7) except that a/dt l  is effectively 
replaced by Falax, because the spatial development (over xl) is considered. This 
difference leads to a kernel q-4 rather than q-4 in their amplitude equation. 

6.3. Terminal solutions: focusing singularity 
There are several candidates for the terminal solution of (5.10). For singular critical 
layers, i.e. ^so # 0, the first possibility is the two-dimensional equilibrium solution: 

A = k,e'ks , (6.10) 

where A, and k are complex and real numbers respectively. This terminal form, 
if it occurs, implies that the small three-dimensional 'imperfection' finally dies out. 
However the equilibrium state (6.10) may be subject to a three-dimensional secondary 
instability formulated by Wu (1991) and hence seems unlikely to be attainable. The 
second option is that the solution blows up at a finite time, say t,, in the whole flow 
field, i.e. as t .+ t,, 

(6.1 1) 
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where c and a. are real and complex numbers respectively and can be determined 
in the same way as described by Wu & Cowley (1993). The above two forms are 
associated only with the 'two-dimensional nonlinear term', and can possibly exist only 
for singular critical layers; three-dimensionality, however, does not play any role in 
their final formation. 

A terminal form of special interest is that the solution blows up at a particular 
spanwise location, say Z,, within a finite time, say t,. We refer to this as 'focusing 
singularity'. The structure is proposed as follows : 

A = (t, -?')-$-iuF(2) , (6.12) 

where 
2 = (t, - q-i ( Z  - 2,) . (6.13) 

A variable of the form (6.13) was introduced in studies such as Hocking et al. (1972), 
and Hall & Smiih (1990). Inserting (6.12) into (5.10), we obtain an integro-differential 
equation for F ( Z ) ,  namely 

-(I + iij)F'/(2) + f 2 ~ ' ( 2 )  + (z + io)F(2) 

where g = Cvj,  h = Chi and 

@,(5,q) = (1 + ()-+(l + 5 + @--'"(1 + 25 + q ) - $ + ' U  . (6.15) 

Equation (6.14) must be solved under certain boundary conditions. A simple one is 
that the disturbance is 2ymmetric about 2, = 0, and decays to zero at infinity, i.e. 
F'(0) = 0 and F --+ 0 as 2 + +a. Note that the 'two-dimensional nonlinear term' also 
contributes to the formation of the singularity. But we do not think its contribution 
is crucial, i.e. even if Oo = 0, the singularity may well occur. Our numerical result 
suggests that this is indeed the cas!. 

While (6.14) is complicated, as 1214 it has the local solution 

(6.16) 

where x and Fo are real and complex constants respectively. This form follows from 
the consideration that as tl --+ t,, the amplitude A should remain bounded except 
at 2 = 2, = 0. A solution of similar form also appeared in Hocking et al. (1972) 
and Hocking 8z Stewartson (1972), The constants x and Fo can be determined, in 
principle, by solving (6.14). Unfortunately, the nonlinear eigenvalue problem posed 
by (6.14) and the boundary conditions are rather awkward to solve. So we shall take 
a short cut by choosing x such that (6.16) can best fit the numerical solution (see 
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below). Since the amplitude equation does not seem to have been derived before, 
we wish to bring it to attention by demonstrating its usefulness while leaving the 
complete resolution of the singularity to the future. 

6.4. Numerical solutions of the modulation equation 
In this section, we solve the modulation equation numerically using a finite-difference 
method. Since there have been detailed experiments for free shear layers, we study 
the amplitude equation (A 18), so that a qualitative comparison can be made with 
the observations. We shall concentrate on the case where the initial disturbance 
is centred at 2 = 0. As noted by Hocking & Stewartson (1972), while the initial 
disturbance of the form (5.7) is theoretically representative, it is not convenient for 
numerical integration of the amplitude equation. So following them, we chose the 
initial condition of the form 

(6.17) A(Z,O) = Zoexp(--) . 

This initial distribution is rather arbitrary. To give a realistic distribution, one must 
resolve a receptivity problem, which is beyond the scope of this paper. Nevertheless, 
we believe that the mechanism and the qualitative features can be revealed by studying 
this particular form of disturbance. The parameters Eo and A. represent the initial 
amplitude and the spanwise length-scale respectively. We shall investigate their effects 
on the formation of the three-dimensional structure. 

The finite-difference scheme we use is the standard Crank-Nicolson method. Be- 
cause of the symmetry, we only need to solve the equation in the domain 2 > 0. The 
boundary conditions are that &(O,R) = 0, and A + 0 as 2 + co. In calculation, we 
put d = 0 when Z 2 Z,, where we chose Z ,  to be a large number so that a change 
of Z ,  does not alter the results appreciably. We find that Z ,  = 20 is sufficiently large. 
The spanwise space step A 2  = 0.05 and the ‘time’ step AX = 0.025 are used, even 
though the grid size A 2  = 0.1, AX = 0.05 is already fine enough. 

The first example is for K = 0.2. This value is deliberately chosen because it 
corresponds to the experiment of LCM, though their mean-flow profile may not 
exactly be the ‘tanh’ form. The other parameters are Eo = 0.1 and A, = 4.  For 
the inviscid case, i.e. L = 0, the development of IAI is displayed in perspective in 
figure 2(a). It can be seen that the small disturbance is amplified as it is convected 
downstream. A more notable feature is that, though the initial distribution consists 
of a single ‘hill’, more ‘hills’ are generated downstream. Up to the streamwise location 
investigated, we can observe at least seven hills (recall the symmetry about 2 = 0). 
The distances between two neighbouring hills are more or less the same, i.e. the 
spanwise structure is quasi-periodic (in a finite Z-range). The appearance of these 
hills indicates that the streamwise vorticity, which is proportional to &, has attained 
an appreciable strength, and that at the same time, the mean-flow is distorted into a 
‘peak-valley-splitting’ pattern. Further downstream, IAl becomes so large and irregular 
that we can no longer obtain reliable results. This seems to indicate that a singularity 
is formed at a finite distance downstream. It is postulated that this singularity appears 
at the spanwise location where is a local maximum, and has the structure (6.12) 
and (6.13). However, we have not been able to verify this for the present situation. 

To examine viscous effects, we investigate the case with R = 5.0, while all other 
parameters remain the same as those in figure 2(a). As shown in figure 2(b), the lateral 
structure again emerges. However, compared with the inviscid case, the termination 
of computation is postponed by two units. As a result, up to nine hills are formed. 

z2 
A0 
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FIGURE 2. (a-c). For caption see facing page 

As a partial study of the effect of the initial condition on the formation of streamwise 
vortices, we increase the ‘initial strength’ Eo to 0.2; the rest of the parameters are the 
same as in figure 2(a). As we can seen from figure 2(c), the overall feature remains 
the same. Nevertheless, compared with figure 2(a), the location at which the same 
number of hills is observed is shifted upstream by approximately two units. This 
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FIGURE 2. A perspective view of the evolution of 121: (a) K = 0.2, 1 = 0 (inviscid limit), Eo = 0.1 
and A0 = 4.0; (b) JC = 0.2,A = 5.0 (viscous case), EO = 0.1 and A0 = 4.0; (c) K = 0.2, 1 = 0 (inviscid 
limit), 90 = 0.2 and A0 = 4.0; (d) K = 0.1, 1 = 0 (inviscid limit), 90 = 0.1 and A0 = 4.0; (e) K = 0.1, 
1 = 5.0, Zo = 0.1 and A. = 4.0. 

implies that an increase of initial amplitude can cause the streamwise vortices to form 
earlier. This conclusion is supported by other calculations which are not presented 
here. 

Comparing with the experiment of LCM, we find that our theory can qualitatively 
capture the observed phenomenon that a disturbance centred at a spanwise location 
can spread laterally to form a spanwise quasi-periodic structure. The result that 
this process depends on the initial disturbance is also in consistent with observations 
(LCM; Lasheras & Choi 1988; Nygaard & Glezer 1991). 

We also studied the case K: = 0.1. The results are depicted in figures 2(d) and 2(e) for 
1 = 0 (the inviscid case) and 1 = 5 (the viscous case) respectively. The development 
exhibits similar features. So there seems little doubt that the phenomenon predicted 
is a generic property of our amplitude equation. 

To examine more closely the process of the formation of the lateral structure, in 
figure 3 we plot the spanwise distribution of at different streamwise locations. Up 
to % = 5.6 (figure 3 4 ,  the spanwise distribution is still monotonic. Nevertheless, the 
amplitude is amplified by a factor of 1000. As it evolves downstream, the ‘top’ of the 
hill is elongated in the Z-direction and becomes flattened. At X = 7.2, the hill splits 
into two (figure 3b). This may correspond to vortex splitting; we note that Bell & 
Mehta (1992) observed that vortex splitting indeed occurred in the early stage of the 
evolution. As the hills grow in height, the inner side of each hill gradually develops 
into a ‘valley’ (figure 34. Further downstream each valley then becomes deeper, and a 
new hill is created in between (figure 3 4 .  From jl= 8.4, each ‘valley’ starts to distort, 
and splits into two (figure 3e). The total number of hills at this station increases to 
5. The newly created hills continue to grow to a height comparable to that of the 



708 x. wu 
1 .o 
0.8 

0.6 

0.4 

0.2 

0 

1.0 

0.8 

0.6 

0.4 

0.2 

2 4 6 8 1 0  

0 2 4 6 8 1 0  

1 .o 
0.8 

0.4 

0.4 

0.2 

0 2 4 4 8 1 0  

1.0 

0.8 

0.6 

0.4 

0.2 

1 .o 
0.8 

0.6 

0.4 

0.2 

0 2 4 4 8 1 0  

1 .o 
0.8 

0.6 

0.4 

0.2 

0 2 4 6 8 1 0  

FIGURE 3. Lateral propagation of a localized disturbance: the evolution of spanwise distribution of 
normalized by the maximum at each streamwise location. The parameters are the same as in 

figure 2(b).  

outermost one (figure 3f) ; the latter at the same time propagates outward laterally. 
From the location 3 = 8.8, each side of the central hill undergoes a wavy distortion 
(figure 3g), which may be related to the lateral 'undulation' observed by Jimenez 
(1983) and Nygaard & Glezer (1991). As a result, two small hills are generated 
almost spontaneously on each side (figure 3 4 .  The outermost hills further move 
sideways, exhibiting a 'wave-like' propagation, (though our amplitude equation is of 
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FIGURE 4. A perspective view of the evolution of 121 for an artificial case where the coefficient of 
the nonlinear term in (A18) is changed to (-1 + K). The parameters are the same as in figure 1. 

diffusion type). It may be instructive to relate this lateral propagation to diffusive 
waves since it is well known that nonlinear diffusion equations can allow for wave 
solutions. We terminate our computation at Z = 9.1 although it can be continued 
slightly downstream. We also examined other cases and find that the process is largely 
similar. 

In all the cases studied above, the coefficient of the nonlinear term is (1 + iK), i.e. 
the real part is positive. Next we present some results for an artificial case, in which 
the coefficient is changed to (-1 + ix), while other parameters remain the same as 
those in figure 2(a). As shown in figure 4, the lateral structure does not emerge in 
this case. Instead, the (single) hill becomes higher and steeper, indicating an energy 
concentration towards the symmetry plane 2 = 0. This seems to suggest that the 
sign of the coefficient of the nonlinear term plays an important role in determining 
whether the lateral structure forms or not. The terminal state appears to be described 
by (6.12). Using (6.12) or (6.16), we can show that on the symmetry plane 2 = 0 ,  IAI 
behaves like 

Here x, is the streamwise location at which the singularity occurs. Using this 
relation, we estimate from the numerical solution>hat x, w 9.2. In figure 5, we plot 
the normalized 121 against the similarity variable Z at different streamwise locations. 
The dotted line is drawn according to (6.16) with x = 0.2; this value is chosen so that 
as Z -+ x,, the numerical solutions can best fit (6.16). Although this procedure is not 
completely rigorous, the result displayed in figure 5 does suggest that the proposed 
singularity may occur in this case. However, we are aware that more study is needed 
to resolve the proposed singularity in a satisfactory manner. 
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x = 7.6, (d) x = 7.8 and (e) ji = 7.9. The dotted line is the solution (6.16). 

7. Conclusions and discussion 
7.1. Main results of this study 

In this paper, we have studied the nonlinear evolution of near-planar disturbances in 
shear flows. A novel modulation equation is obtained which is applicable to broad 
class of inviscidly unstable shear flows. 

In particular, for a free shear layer the numerical solutions show that our amplitude 
equation can qualitatively capture the formation and the development of the lateral 
structure from an initially localized disturbance. The qualitative predictions are 
consistent with the experiment of LCM. Our analysis shows that under the effects of 
the critical-layer nonlinearity, streamwise vortices can form at a Ftreamwise location 
upstream of the linear neutral position by a distance of order € 3  R. This is prior to 
the first spanwise roll-up, which occurs at a position upstream of the neutral point 
by a distance of O(eiR)  (see e.g. Goldstein & Leib 1988). Thus our theory is relevant 
to the experiments of Lasheras & Choi (1988), Nygaard & Glezer (1991) and LCM 
in particular, since in these experiments streamwise vortices were observed to form 
before the first roll-up of the primary spanwise vortices was completed. We note that 
Bell & Mehta (1992) found that streamwise vortices formed just downstream of the 
roll-up while Jimenez (1983) found that vortices appeared at the stage where the first 
pairing of the spanwise vortices occurred. This disagreement may be due to different 
upstream conditions and different techniques used to detect the structure (see below). 

Unlike previous theoretical studies, which relied heavily on numerical computations, 
our theory is simpler, and much less computationally intensive (though it is still not 
a trivial task to solve the amplitude equation). The second advantage of our theory 
is that it tackles physically realistic flows directly. Note that the expressions for the 
coefficients are valid for any shear flows, though in this paper we have only computed 
the coefficients explicitly for the ‘tanh’ shear layer. The theory of Lin & Corcos (1984) 
and Pullin & Jacobs (1986), however, only models the physics taking place in the 
braid regions, while Ashurst & Meiburg (1988) used vortex sheets as an ideal model 
of a shear flow. Finally, in our theory both spatial and temporal development can 
be considered and are equally convenient. For free shear layers, we studied spatial, 
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rather than temporal, evolution, and thus our study is closely relevant to practical 
situations. It appears that this is the first theoretical study which is able to reveal the 
development of the lateral structure in the spatial sense. Of course, the validity of our 
theory is restricted to the case where the initial flow is basically two-dimensional. Once 
the spanwise distribution is significantly distorted, a new theory must be developed 
to replace the present one. Alternatively, if the initial spanwise distortion has a short 
lengthscale, our theory would be largely irrelevant. But we note that an extension of 
the work by Goldstein & Choi (1989) or Wu et al. (1993), which involves a pair of 
oblique waves, may be able to take account of this situation. Since the subsequent 
evolution depends on the earlier history, an understanding of the development of 
the three-dimensional structure from a predominantly two-dimensional flow is of 
practical importance if this structure is to be efficiently controlled. In this paper we 
have demonstrated that even a slight three-dimensionality can have a significant effect 
on the development of the disturbance. 

7.2. Further discussion 
To aid the discussion, we now re-examine the nonlinear interaction from the vorticity 
dynamics point of view. Let 52 = (52cx),521Y),52(z)) be the vorticity of the disturbance; 
then within the critical layer, its components can be expanded as 

52'") = € k 2 p E  + C h p ( Y , t l , Z )  + C.C. + . . . , 

n@) = €+52i.)E + c k p ( Y , t , , Z )  + C.C. + ... , 
lFY) = ~452Y)E  + FfQF)(Y, t l ,Z)  + C.C. + . . . , 

where G!?) = aI$ , /dY ,  @" = --ict@, and 52r) = - 8 ~ , / a Y  to the order of ap roxi- 

and Qf), satisfy 
mation. The vorticity components associated with the induced mean-flow, 52, (x[ Q?' 

an?) a 2 5 2 W  
(7.1) /z> = - A -  

atl a y2 ay ' 

(7.3) 

where f i b  = --DY(yc) is the shear or the spanwise vorticity of the basic flow. The first 
term on the right-hand side of (7.2) comes from (u . V)Q, where u is the instantaneous 
velocity field. The second term on the right-hand of (7.2) arises from (52 . V)u,  
and represents the stretching of the primary spanwise vorticity by the strain aA/aZ 
which is created because of non-uniformality in the spanwise direction. Such a 
stretching contributes to produce a vorticity component in the normal direction, i.e. 

= a@)/aZ.  The distribution of this quantity in the z-direction faithfully reflects 
the change of the spanwise lengthscale and the development of the three-dimensional 
structure, as suggested by Nygaard & Glezer (1991). The Reynolds stress in (7.1) is 
from (u . V)Q, rather than from (52 . V)u. This indicates that the streamwise vorticity 
is not directly driven by stretching, nor itself is stretched, contrary to the Lin-Corcos 
model. The reason is that the disturbance that we are considering has a large spanwise 
lengthscale. Nevertheless, the stretching of the primary s anwise vorticity affects the 
amplitude and hence contributes to the generation of 52:' P through the forcing term 
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in (7.1). The last terms in (7.2) and (7.3) can be interp5eted as the stretching of the 
vorticity of the basic flow by the strain af?io)/aZ and aW,(")/aZ, which arise again as 
a result of non-uniformality in the z-direction. Since in the Lin-Corcos (1984) model, 
the external strain field is completely depleted of vorticity, this effect is absent there. 
Therefore, while our analysis indicates somewhat the importance of the stretching 
associated with three-dimensionality, the way that the stretching is involved differs 
from those proposed, e.g. by Lin & Corcos (1984), LCM, Lasheras & Choi (1988), 
Bell & Mehta (1992). Our analysis shows that when the spanwise lengthscale is large, 
the stretching of primary spanwise vorticity dominates. Moreover, the strain involved 
is created by spanwise non-uniformality rather than by the spanwise vorticity as in 
the Lin-Corcos model. We suggest that such stretching may be responsible for the 
bending of primary (spanwise) vortex rolls and the spanwise undulation observed, e.g. 
by Nygaard & Glezer (1991). While our study implies that longitudinal vortices can 
be 'initiated' without stretching the streamwise vorticity, we must point out that once 
the spanwise lengthscale becomes sufficiently short (as a result of the distortion), the 
streamwise vorticity stretching will become important and possibly dominant. 

Based on the results of this paper and the discussion above, a possible mechanism 
for the generation of streamwise vortices can be stated as follows. A basically two- 
dimensional disturbance is slightly distorted in a three-dimensional manner by some 
unavoidable small imperfection present in the flow. Owing to this non-uniformity 
in the spanwise direction, a strain field is created. As the two-dimensional wave 
is amplified, the strain grows in strength. The primary spanwise vorticity is then 
continuously stretched. This may be the main nonlinear activity leading to the 
redistribution of energy and vorticity in the spanwise direction and the induction of 
other vorticity components including streamwise vorticity. The spanwise redistribution 
is manifested in the formation of quasi-periodic streamwise vortices. It is clear that 
the growing of the primary spanwise vortices is crucial in our approach because it is 
this growth that brings nonlinearity into play. 

It appears to be necessary to clarify the concept of 'secondary instability', which has 
been frequently invoked to explain the formation of the streamwise vortices. On the 
one hand, their origin is certainly associated with some form of instability mechanism. 
More precisely, it is 'the result of the unstable response of the layer to the three- 
dimensional perturbation in the upstream condition', as concluded by LCM. On the 
other hand, owing to the growth of the two-dimensional flow, it seems inappropriate 
to formulate this secondary instability as an eigenvalue problem, and then to isolate 
any single mode responsible for the observed three-dimensional structure. Instead, it 
should be formulated into an initial-value problem? (see also Corcos & Lin 1984). The 
support for this view point can be found from previous studies. For example, Ashurst 
& Meiburg (1988) concluded that their numerical simulations 'did not reveal any 
single disturbance which causes the three-dimensional instability of the plane mixing 
layer'. Nygaard & Glezer (1991) found that 'any spanwise wavelengths synthesizable 
by the heating mosaic [used to generate a spanwise disturbance] can be excited, and 
can lead to the formation of streamwise vortices'. Lasheras & Choi (1988) and LCM 
found that there was no most unstable mode. We note that Pierrehumbert & Widnall 
(1982) identified translative modes for Stuart vortices. However, this became possible 
because a steady, rather than a growing, basic flow was used. It appears unlikely 
that the development of the streamwise vorticity is associated with the excitation 

t This is not dissimilar to the situation of Gortler instability; see e.g. Hall (1991) and references 
therein. 
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of any particular mode (Lasheras & Choi 1988; Ashurst & Meiburg 1988). Given 
that the process is described by an initial-value instability problem, the subsequent 
development then tends to depend on the ‘initial’ conditions. Therefore it is not 
surprising that discrepancies exist regarding the spanwise spacing, the streamwise 
location where the longitudinal streaks are first formed, etc. since they are affected 
by upstream conditions. This have been strongly suggested by many experiments, e.g. 
Jimenez (19831, Jimenez et at. (1985), LCM, Lasheras & Choi (1988), Nygaard & 
Glezer (1991). 

In this paper, we have only solved (A 18), a special case of (5.10). The range of the 
parameters that we have examined is also limited. Obviously, further numerical study 
is needed to explore the properties of (5.10). In particular, the solutions to (A 11) and 
(A 18) with a spanwise-periodic ‘initial condition’ deserve further investigation. We 
expect that such a study would provide insight into the phenomenon observed in the 
experiments of Lasheras & Choi (1988) and Nygaard & Glezer (1991). 

Finally, we note that the present theory can be extended to compressible and 
stratified flows. In addition, by adopting an upper-branch scaling (Bodonyi & Smith 
1981)’ the present approach can be modified to describe the evolution of a T-S wave 
packet in boundary layers and channel flows (the analysis for which is related to the 
viscous limit discussed in 96). Such a study would be relevant to the experiment of 
Gaster & Grant (1975), and may explain the observed distortion, in particular the 
spanwise splitting of wavepackets. This is currently under investigation by the author 
in collaboration with Dr S.J. Cowley. 
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interest and helpful comments. Professor F.T. Smith is thanked for kindly sending the 
preprints of the papers by him and his colleagues. The referees’ comments are also 
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Appendix A 
In this appendix, by modifying the analysis in the main text of this paper, we 

deduce the amplitude equation for disturbances in free shear layers. 
As stressed in 92, the scaling for free shear layers is the same as that for the 

Stokes layer, i.e. nonlinear effects first become important when the linear growth rate 
decreases to O(e3). This happens at the position where the local Strouhal number is 

S = S o + e h 1 ,  (A 1) 
where S1 < 0, and So is the local Strouhal number at the linear neutral point. 
Throughout this appendix, the notation for the mean-flow quantities, e.g. U,, a0, 
etc. is the same as in Goldstein & Choi (1989) or Hultgren (1992). The reader is 
recommended to consult these for definitions. The local Reynolds number R = &d/v 
is scaled as (2.10). For free shear layers, it is appropriate to consider the spatial 
development, and the variable describing streamwise evolution is 

x1 = € 4  u;’x . (A 2) 
Here we have introduced a factor U;l in (A2). This will allow us to make use of 
the results in the main text of this paper without going through a detailed expansion 
procedure. The slowly varying spanwise variable is defined (2.14). 
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Outside the critical layer, the vertical velocity of the disturbance is expanded as 

Y = rA(Z,xl)Bl(y)E + E ~ U ~ ( Y , X ~ , Z ) E  + C.C. + . . . , (A 3) 

where E = e'"(, and 5 = x - vet - E :  &/at. The expansions for the pressure and other 
velocity components are similar to (3.4), (3.1) and (3.3) respectively. The function U1 
satisfies the Rayleigh equation 

d2 U" 
where & = - - (a2 + -) 

dy u-c &vl = 0 , 

The solution near the critical level ye = 0 is (see e.g. Goldstein & Choi 1989) 

@* = 1 + - l (  a2 + - $) y2 + bly + 0 ( Y 3 )  ' 
2 

The function g2(y, xl, 2)  satisfies the inhomogeneous Rayleigh equation: 

As y + &O, (A6) has the solution 

iUr [:: ] 
aUp D2=dfc'y+- --iSIA yloglyl+0(y2) I 

The solvability condition for (A6) is 

where jl and j 2  are constants defined by 

Note that j 2  should be interpreted as a Cauchy principal value. 
Because the critical layer is regular, the solution contains only one jump (c+ - c-).  

It must be determined by analysing !he dynamics within the critical layer. So we 
introduce an inner variable: Y = y /ex .  Within the critical layer, the expansions take 
the form of (4.1)-(4.4). The 'critical-layer operator' is 

Because we have defined x1 by (A2), this operator is slightly different from that in 
Goldstein & Choi (1989) and Hultgren (1992), but is exactly the same as (4.5) if we 
identify x1 as tl,  and & / a  as U r ~ , .  Therefore we can borrow the result (4.28) to obtain 
the jump (c' - c-), namely 
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The linear part follows from the n-phase shift at the logarithmic branch point (see 
(A7)). Since for free shear layers, U: = 0, the first nonlinear term in (4.28) now 
disappears. Using (A8) and (A lo), we obtain the amplitude equation for free shear 
layers : 

dA dzA 
- - 4- - goA 
ax,  a z 2  

Note that the expressions for the coefficients are given explicitly in terms of the 
mean-flow profile and the eigenfunction (cf. Goldstein & Choi 1989). They are valid 
for free shear layers with various profiles. Specifically, for the 'tanh' shear layer, we 
have (see e.g. Huerre 1987) 

It is this special case that we shall investigate numerically in this paper. We can scale 
out various parameters by introducing the variables similar to (5.8)-(5.9) : 

A = Ae-@o+g0iXl) lhrl~14rI-~/(gor)~ Y (A 16) 

n = go,x, , 2 = (g&)tlqrJ-k , x = A/(go,)3 . (A 17) 
The amplitude equation then becomes 

+a3 +w 

= (1 +iK) 1 K ( < , ~ I A )  { 5 3 ~ ( ~ , n  - < ) A ( z , X  - 5 - q)&,(Z,X - 25 - q) 

+t2qA(Z ,a  - ()[A(Z,X - 5 - q)Az(Z,R - 25 - q ) ] z  
+ t 3 [ A ( Z ,  R - t )A(Z,  j;: - 5 - q)Az(Z, X - 25 - q ) ] z }  d(dq , (A 18) 

with the 'initial condition' 2 + A(Z,O) as jl --+ 0. Here I in the kernel is written as A, 
and 

3 
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Appendix B 

In this appendix, we show that as A 4 +m, the fully integral-partial-differential 
equation (5.1) reduces to (6.2). For convenience, let Nu) (j = 1,2,3,4) denote the first, 
second, third and fourth nonlinear terms in (5.1) respectively. 

We first observe that after substituting the change of variables 

tl = A4t1 , 5 = 2-Q , q = n-iq , (B 1) 
into N'),  N2) and N"), and taking the limit A + +a, we immediately have 

where Co is a constant defined by a convergent integral. Note that these nonlinear 
terms revert to classical cubic form with history effects being damped out. 

To estimate N3), we integrate N3)  by parts with respect to q to obtain 

a +m +m 
N(3L(-3s) -1 1 1 qKj( t ,  ~IA)A(~~-<)Z 

We then substitute the change of variables 

into (B5) and take the limit 2 + +a; we find 

or equivalently 

where pj = fa2u;(yr). Using (B8), and (B2) to (B4), we obtain (6.2). 
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